Study of Buoyancy Driven Heat Transport in Silicone Oils and in Liquid Nitrogen in View of Cooling Applications

نویسندگان

  • K. Satpathy
  • A. Duchesne
  • C. Dubois
  • J.-F. Fagnard
  • H. Caps
  • P. Vanderbemden
  • B. Vanderheyden
چکیده

Motivated by applications for cooling superconducting pellets with liquid nitrogen, we consider a source with a fixed heating rate per unit volume, immersed in a liquid pool and cooled through natural convection. In one recent experimental investigation (Dubois et al., Eur. Phys. J. E (2016) 39: 79) carried on silicone oils and liquid nitrogen, we have demonstrated that the velocity field satisfies specific scaling laws with respect to the temperature increase in the liquid pool. In this work, we pursue the analysis by modeling the heat transfer in a parallelepiped enclosure for a steady laminar flow regime. The Navier-Stokes equations are solved using a finite volume approach to obtain the detailed three-dimensional flow and heat-transfer characteristics. A quantitative analysis of the velocity field over the temperature field shows that the experimental power laws are reproduced in simulations. Following Dubois and Berge (J. Fluid. Mech. (1978) 85: 641), a theoretical law originally introduced in the context of the classical Rayleigh-Bénard experiment is shown to be satisfied in the simulations over a wide range of Rayleigh numbers (Ra), assuming the definition of the characteristic convection length is adapted to the investigated geometry. Moreover, the simulations are shown to correctly

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irreversibility Analysis of MHD Buoyancy-Driven Variable Viscosity Liquid Film along an Inclined Heated Plate Convective Cooling

Analysis of intrinsic irreversibility and heat transfer in a buoyancy-driven changeable viscosity liquid along an incline heated wall with convective cooling taking into consideration the heated isothermal and isoflux wall is investigated. By Newton’s law of cooling, we assumed the free surface exchange heat with environment and fluid viscosity is exponentially dependent on temperature. Appropr...

متن کامل

Investigation of Heat Transfer Enhancement or Deterioration of Variable Properties Al2O3-EG-water Nanofluid in Buoyancy Driven Convection

In this study, the natural convection heat transfer of variable properties Al2O3-EG-water nanofluid in a differentially heated rectangular cavity has been investigated numerically. The governing equations, for a Newtonian fluid, have been solved numerically with a finite volume approach. The influences of the pertinent parameters such as Ra in the range of 103-107 and volume fraction of nanopar...

متن کامل

Numerical Investigation of Double- Diffusive Mixed Convective Flow in a Lid-Driven Enclosure Filled with Al2O3-Water Nanofluid

Double-diffusive mixed convection in a lid-driven square enclosure filled with Al2O3-water is numerically investigated. Two-dimensional nonlinear governing equations are discretized using the control volume method and hybrid scheme. The equations are solved using SIMPLER algorithm. The results are displayed in the form of streamlines, isotherms, and iso-concentrations when the Richardson number...

متن کامل

Heat transfer in MHD square duct flow of nanofluid with discrete heat sources

The effect of thermal and solutal buoyancy induced by a discrete source of heat and mass transfer in a square duct under the influence of magnetic field, especially at the turbulent regime for the first time is reported. Al2O3/water nanofluid is used with constant heat flux from three discrete heat sources. In the present study, the effects of Reynolds number (100 to 3000), particle volume frac...

متن کامل

Buoyancy driven heat transfer of a nanofluid in a differentially heated square cavity under effect of an adiabatic square baffle

Buoyancy driven heat transfer of Cu-water nanofluid in a differentially heated square cavity with an inner adiabatic square baffle at different positions is studied numerically. The left and right walls of the cavity are at temperatures of Th and Tc, respectively that Th > Tc, while the horizontal walls are insulated. The governing equations are discretized using the finite volume method while ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017